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FOREWORD

This report was prepared by MITHRAS, Inc., of Cambridge,
Massachusetts, for the Upper Atmosphere Physics Laboratory, Air
Force Cambridge Reésearch Laboratories, Hanscom Field, Bedford,
Massachusetts, undér Contract AF19(628)-3280. The work was initiated
by Dr. N. W. Rosenberg and monitored by him and Dr. D. Golomb.
The research was supportéd by Advanced Research Projects Agency
as-part of Project DEFENDER.

The investigations whose résults are reported were conducted
during the period 1 July 1963 to 30 June 1964. They were directed by
Mr. Jacques A: F. Hill and carried out by Mr. Henry L. Alden, and
Mr. Roger H: Habert. This final report was written by Mr. Alden.

‘The work reported hére represents a continuation of a program
begun during thée previous year under Contract AF19(628)-415. This
re,éort ¢oncludes the work on Contract A%'19(628)-3280.
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ABSTRACT

This report describes methods for calculation of the
velocities and thermodynamic properties of flow fields
thrcugh and around high altitude rocket plumes. The main
effort is directed at obtaining a good repreésentation of both
the jet flow from rocket motors and the shock-mixing
layers in the frontal régions; theé calculation then proceeds
downstream using standard methods. The work may be
divided in three parts: the development of meéthods to cal-
culate the flowfields throughout plumes using the principles
of inviscid continuum mechanics; thé study of the shock-
mixing layér structure 2t the nose of the plume using the
géneral Navier-Stokes equations (i.e., accounting for vis-
cosity, héat conduction and diffusion); and an estimate of
validity of continuum mechanics for desc¢ribing high altitude
plumes, as inferred from a study of shock wave formation
at high altitudes. A comparison with avaiiable cbservations
shows good agreement with overall plume dimensions as
determined by the flow-field analysis. It may be concluded
that the analysis provides a sound gas-dynamic description
which maybe used as a basis for investigation of the plasma

and chemi-electric properties of high altitude plumes.
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1, INTRODUCTION

As the exhaust gases released by a missile in powered flight
expand into the atmosphere, a complex of fluid dynamic, chemical and
radiative phenomena occur. These are associated with a large visible
plume which forms around the rocket and trails behind it, as shown
by Rosenberg (1961). The radiative phenomena are ""observables' and
have been subjéected to the most inténsive observation. In order to
understand how they arise and what form they may take in new situa-
tions, it is necessary to study th> chemistry, plasma properties and
fluid dynamics of the plumes.

The work réported hére is concérned with theé fluid dynamic
aspects of wmissile tra'ls, and especially with the motions of both
the air and rocket gases which create the plumes. It is thus an exten-
sion of early work by Hill and Habert (1963). In the latter a simple
theory was developed for the sizée and shape of high altitude plumes,
and the dependence of thése propertiés on altitude, motor size, nozzle
geometry, conbustion pressure and forward speed. The general plume
was described by a two-parameter family of ellipsoids; using a simple
blast wave theory the radius of curvature at the nose was evaluated,
while the plume length was calculated using the concept of plume drag.
Comparison between pred1ct1ons and optu.al observations showed
excellent agreement in nosé radii and maximum diameters. In addition
it was shown that it is reasonablé to use the methods of ¢ontinuum
mechanics to study the flows in plumes. An appropriate approximation
to the Navier-Stokes equations was developeéd for the structuré of the
mixing layer in the frontal regions, where it is merged with botk the
external and internal shock wavés. The success of the early work
suggested that it would be possible to develop methods to evaluate the
entire {low field in plumeés, a goal of great practical inter est since it
would permit calculation of air-gas densities, chemical reactions and
electro-opucal properties.

This report describes the application of thevretical principles
to the problem of dewsmg methods to calculate the velocities and
thermodynamic properties of flow fields through and around high-
altitude plumes. The main effort is directed at obtaining a good repre-
sentation of both the jet flow from rocket motors and the shock-mixing
layers in the frontal regions. Farther downstream, and at larger
distances lateraliy from the plume axis, standard methods are avail-
able. The work may be divided in three parts: the development of
methods to calculate the flow fields throughout plumes using the principles
of inviscid continuum mechanics; the study of the shock-mixing layer
structure at the nose o: the plume using the general Navier -Stokes
equations (i. e. accounting for viscosity, heat conduction, diffusion); and
an estimate of the validity of continuum mechanics for describing high

1 MC 63-80-R1
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altitude plumes, as inferred from a study of shock wave formation at
high altitudes.

It should be noted that in this work there is the requirement
that the gross propertiés of plumes, such as nose radius and length,
be predictable from the detailed flow picture, and that they must agree
with the simple méthods already developed in the early work, as
well as with observation of flights.
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2. SUMMARY ANL CONCLUSIONS

Methods have been developed to calculate flow fields in rocket
plumes at high altitude. These, together with the technique of
Witham (1960) supply a complete and practical way to analyze the field
properties (velocities and thermo-dynami¢ quantities) using the prin-
ciples of inviscid continuum mechanics. The methods may be des-
cribed as follows.

a.

The inner flow from the rocket nozzle is identical to
that which would occrr in a vacuum. The inviscid,
perfect-fluid formulation of gas dynamics is used to
obtain asymptotic équations for continuous flows issu-
ing from nozzles intd a vacuum. A method of series
expansion is employed such that the first term repre-
sents the final (limiting) flow at very large distances
from the nozzle. The genéral solution for higher order
térms is demonstratéd. Specific solutions for first
and second order téerms are obtained. The flow is
described as a seriés of perturbations of a flow
everywhere radial and at the limiting velocity; the
angular distribution of mass flux along various radial
directions, according to the theory, can be chosen
arbitrarily and can therefore be used to match the
initial conditions of the flow near the nozzle. The latter
conditions must be obtained independently by experi-
ment or calculation, e.g., by the method of characier-
istics.

The surface of the plume is conveniently described, in
the inviscid approximation, by the dividing stream-
line separating the outer air flow from the inner flow
of rocket gases. Starting with the approximations of
hypersonic flows, the inviscid plume equation is set
up which, when integrated, locates the surface of
dividing streamlines. The equation is integrated for
representative cases.

With the dividing streamlines as reference, the location
and properties of the double shock layer are expressed
algebraically.

Flow directly downstream of the rocket is returned to
atmospheri~ pressure through a mach disc which is
located by the methods of Hill and Habert (1963); flow
outside the wake of rocket gases and behind the frontal
regions of the plume can be analyzed by the technique
of Witham. Thus the set of methods (a)-(d) is a complete
system for inviscid plume analysis,

3 MC 63-80-R1



The flow at the nose of plumes has been analyzed using the
Navier-Stokes equations accounting for viscosity, diffusion and heat
conduction. The reduced equations of Hill and Habert {(1963) were inte-
grated using the method of influence coefficients to satisfy the split bound-
ary conditions. This method gave a set of numerical results for the
flow pattern in the merged layer around a spherical release; the analysis
représents the first computation of its kind. It was found however that
the method was inherently awkward and slow. To remedy this a second
method was developed for programming in FORTRAN. The problem
is one of integrating a set of eight first-order ordinary differential
equations which are restricted by a sct of split boundary conditions.
Development of the new method was accomplished through the use of a
set of asymptotic (analytic) solutions to the equations, an approach which
greatly simplifies the numerical program.

The numerical results from the first method show thé struc-
ture of the merged layer for one particular flight condition, and dem-
onstrate the adequacy of the basic formulation of the problem to
represent the variation o properties in the merged layer.

The study of shock wave formation at high altitude shows that
no completely satisfactory criterion for shock wave formation has
yet been established in thé field of rarefied gas-dynamics. A plausible
criterion can be developed however, expressible in terms of the ratio
of shock thickness to plume (or body) radius. Application of this
criterion to rocket plumes leads tc the result that typical ICBMS and
IRBMS will generate a bow shock all the way to burnout of the last
stage (SECO).

4 MC 63-80-R1
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3. INVISCID PLUME FLOW

3.1 Geueral

The plume shape behind a rocket is the résult of interaction
between the atmosphere, the forward motion of the missile, and the jet
flow from the rocket motor. The inviscid flow model is that shown in
Fig. 3.1. The coordinate axes are fixed in the missile, thus giving the
atmospheric free stream a velocity relative to the origin. Beéhind the
rocket is a region in which the flow is identical to the flow of a jet ex-
hausting to vacuum. This region is bounded by an inner shock which
alters the jet velocity and pressure to accommaodate them to the on-
coming free stream. The latter must also accommodate itself by pass-
ing through an outer shock. In between the two shocks is a zone called
the merged layer in which the two gases flow together downstream. In
reality the gases mix, and the shocks extend well into the layer because
of viscous forces. The properties of the layer are complex and depend
on the effects of viscosity, diffusion, heat transfer and the properties
of real gases. A discussion and analysis of these complications are
taken up in a separate section {4). In the idealized inviscid model the
layer can be thought of as flowing in two parallel sublayers of unmixed
gases, separated by a contact surface as indicated by the dotted linie in
Fig. 3.1. Directly downstream from the rocket, the region of jet flow
is returned to atmospheric pressure by a combination of shock and vis-
cous processes which are not yet known. For this model it will suffice
to assume that the jet flow is returned to ambient pressure through a
normal shock in the rear. This condition determines the location of the
rear shock and the flow behind it for the inviscid model.

In order to analyze the inviscid plume model it is first necessary
to have a knowledge of the jet flow from the rocket motor at large dis-
tances from the nozzie exit. To this end a general analysis was made of
asymptotic flows of jets exhausting a vacua. The results provide a
method of representing the asymptotic flow behind any rocket motor in
a useful form. With this s a basis, the analysis of rocket plumes was
then carried out to obtain the shape and position of the contact surface
in the merged layer.

In Section 3 an account is given of the development of general
formulas for the asymptotic flows of jets. This is followed by a de-
scription of the inviscid plume equations and their solution in certain
cases. These results are then examined in the light of experimental
data. Finally a discussion is given of the next steps in the analysis of
the rocket plume problem.

5 MC 63-80-R1
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3.2 The Asymptotic Flows of Jets Exhausting into Vacua

There exist simplified representations of flows from jets, such
as that of Mirels and Mullen (1962) using the concept of hypersonic
similitude, and that of the Convair/Astro group, using the concept of
simple source flow. These methods aim at representing the flow of
jets at large distances from the nozzle. There are other methods which
deal with the flow close to the nozzle, notably the method of character-
istics as employed by Bowyer (1958). There is a large regior of the flow,
however, which is intermediate between these two zones of application,
and in which either method presents difficulties. To carry the method
of characteristics downstream for thousands of nozzle diameters is
impractical. To employ the source flow concept properly requires that
this flow be matched to the initial flow conditions close to the nozzle,
but this region is just where the simple source concept is not valid. The
same is true of the hypersonic similarity method. For thése reasons a
new approach has been taken in which the rigorous non-viscous equations
of motion are solved by using an asymptotic series expansion ia terms
of reciprocal powers of r, the radial distance downstream measured
from the nozzle. The first two téerms of this expansion are equivalent
to the source-flow concept of Miréls and Mullen (1962); higher terms in
the series permit the flow to be matched to the flow close to the nozzle,
and give a sound estimate of the errors invoived in dropping higher
order terms from the calculations. A brief account of the method is
given in the paragraphs below, while a more detailed description is
given in MITHRAS report No. 376A.

The basic equations for inviscid compressible flows are de-
veloped by Tsien (1958). The natural coordinate system for this
investigation is spherical, with the origin located at the rocket nozzle
and the x3 axis directed downstream along the nozzle axis (see Fig. 3. 2).
The flow is rotationally symmetric around the x, axis, and has a ve-
locity v along the radius r and a velocity v at right angles to r. The
equations of continuity and irrotationality take the following form in any
plane w = const:

{az ’_ uz ig - uv {E-Y. + -]L 9_‘1} + { az - vz} l 3_v
or or r 3 r 09
aZ
2 - -—r-{Zu + vcotO} (3. 1a)
v 1 0du v
—— o~ - w— t - = 3.
or Y = 0 (3. 1b)
u = radial velocity

"

angular velocity

local sonic velocity
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X3=r COS 6
Xp=r SIN G SINw
X, *r SING cosw

Figure 3.2. Coordinate System for Jet Flow
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The equations of motion can be integrated independently of (3. 1) to give
a relation between the magnitude of the velocity and the thermodynamic

properties of the flow:

2 _y-1 2 2
a® = = c [1 - (U/c)] (3. 2)
U2 =u2+ vz

ratio of specific heats

2
"

c limiting velocity of flow

Equations (3. la) and (3. 1b) are homogeneous in dimensional velocities as
well as r, and may be normalized by dividing by ¢ y*%, where y" is a
reference length which will be taken to be the throat radius of the rocket
nozzle. All velocities can be replaced by (u/c), (v/c), and r by r/vy*;
this substitution will be assumed in what follows. The solution of (3. 1)
by asymptotic expansion is carried out by expressing (u/c) and (v/c) in
the form of appropriate series. These are:

o
2 = Z c £ (8)r” én (y=1) £, (8) =1
e £ (6) =0

Y- i £ (g) r-2n =1 e, = [1-2n(v- 1)
- nTe () = dlde

(3.3)

The form of v/c is not independent, but is picked so that, together with
u/c, it satisfies (3. 1b). The series (3) are now substituted in (3. la) to
obtain the equations for the f, which result from setting the ccefficient

of each power of r equal to zero. The terms with a require the use of
(3.2). The result of these substitutions is to show that f; (8 ) can be an
arbitrary function of § while the higher order {,, are algebraic functions
of f} (9) and its derivatives.

The thermodynamic properties can be expressed in terms of the
solution (3. 3) by using the standard relationships of isentropic flows.
Pressure, density, and temperature in the jet flows are given to the
first order by:

9 MC 63-80-R1
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5T
/ {z-27)(-1))}
plp. =
o rZ»y
1
7—[
{z (3-2v) (- fl)} - (3. 6)
ple, * > :
r
2 (3-27) (1))
T, =0
r J

To investigate the matching of asymptotic flows to near-nozzle
flows, it is necessary to express some properties of the flow to higher
orders than the first. A convenient propérty for this purpose is the
reciprocal of the square of the Mach number, a2/U2, It contains in the
first term the function f, (6) as a linear factor. The near nozzle calcu-
lations of Bowyer (1958) give (U/a) explicitly and thus provide a simple
way to determine the form of fj (8). The formula for a2/U2 = (1/M?4) is,
including the second order term:

1 (=10 06=-27v)(-1))
M2 RACERY
22 2 )
+ {36206 —2(5 - ay) £, - £ }. (77._)
2r
(3.7)
where
2(5- 411, =
Ef2+ B £f cot0+ T 2+ D £ 1y
1 17 1 1 11
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>~ 4 -3y
¢ = 7=T

(3 - 2%)

To match flows it is first necessary to ~t.0ose a suitable form for £,(6).
This is most easily explained vy refereice to the sketch of Fig. 3.3, The
flow emerges from the nozzle at the left under known conditions of Mach
number ind angular distribution. The flow expands to some maximum
angle @), and distributes itself in a fan-shaped pattern of streamlines
which eventually become radial. The pattern near the nozzle is that cal-
culeted by Bowyer (1958); it is straightforward to read off values of
Mach number and compute 1/ M2 for varying 6 at constant radii for
comparison with (3. 7). For a particular nozzle a plot of these .oints

for r = 60 is shown on Fig. 3.4 (normalized to 1.0 at 8 = 0). From
(3.7) it is seen that in the first approxirmation this curve is the function
f1 (8). The near nozzle computations thus indicate the general form of
f1 (6). They suggest several possible curve fits. It will be expedient

to choose the representation

4 (v - 1) _
G0 - iy (eI 5.9)
OM' = effective maximum expansion angle
A = normalizing constant

11 MC 63-80-R1
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This curve fitting function is shown cn Fig. 3.4. The particular form
chosen here lends itself to easy computation in the applications that
follow.

Having picked a suitable form for f; (8 ), one can now match
flows. For this the nozzle is that of Figs. 4, 5, and 7 of Bowyer
(1958). The flow emerges with a semi-divergence angle of 159, a
nominal exit Mach number of 2. 843, a nominal area ratio (exit to
throat) of 5:1, and ay of 1.225. If the asymptotic series is a Correct
representation, then the matching problem reduces to the proper
selection of two parameters: y", the throat radius; and the nominal
angle of maximum expansion, 8 M. The first matchmg is done along
the flow axis (8 = 0) to obtain an effective value of y*. For this,
formula (3. 7) can be reduced to

]

1
(57 o

(=1 (= M) 2 (v L 8ly-1)
RCTR) [H{ 2t )+ T st }-

()
—tey ] (3.9)

Although this fofmula is depéendenton@ M it is not sharply seénsitive to
it; a value of 64 can be picked based on maximum Prandtl Meyer
expansion angles, and then adjusted later without upsetting the first
calculations.

The value of y* is a. first taken to be the nominal value, and
then adjusted slightly to obtain a curve fit at large r. The résult of
this process is shown in Fig. 3.5, in which the solid line is 3.9 and
the dotted line is the first term (the so-called linear solution). It is
seen that the second order solution tenis toward the linear as r gets
large, but that convergence is not rapid. The exact calculations are
taken from Bowyer (1958) and are shown as the encircled points. To
obtain a fit, a value of y* was picked such that equalled ye, the exit
radius, divided by 2. 22; the nominal factor is va = 2,24. This result
promotes confidence that the 2nd order solution is adequate to match
flows near the nozzle, and that the first order solution is quite
accurate for r > 500. Below a value of r =7, exact flow deviates
sharply from the asymptotic; this point corresponds to the arrival at
the center line of the Mach wave from the lip of the nozzle. It is to be
expected that such deviations would occur since the asymptotic flows
are assumed to issue from a point. It should also be noted that the
point of origin for measuring r is displaced downstream from the
nozzle. The origin is found by passing a line through the nozzle lip at
an angle of 8) and locating r = 0 where this line crosses the nozzle axis.

13 MC 63-80-R1
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Figure 3.4. Asymptotic Jet Expansion Theory Matching Flows with
Near- Nozzle Calculations.
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The next step is to select an effective value of 8 ). This is
done by exam'ning the function (1/M2) at r = constant and picking 8 M
to obtain the L _st fit for the variation of (1/M2) with 8. The adequacy
o1 this procedure can then be checked by comparing the flows at other
values of r. In the example here the near-nozzle data for r = 130 were
used and gy picked to be 117. 59, The variation of 1/M? with@ at
r =139 is sl\gownon Fig. 3.6, together with the rigorous near-nozzle
calculation. As a check, a similar comparison is plotted for r = 42. It
appears that the agreement is good, and that the small changes observed
are adequately represented by the second order theory. The linear
solution, representing the flow as r - %, is shown on Fig 3. 6 as the
dotted line. It should be noted that the curves are normalized to equal
unity at @ = 0; compared to the values at the axis, then, the second
order effect is to reduce (M)Zg = 0 /M2 below its final (linear) value.
However, by referring to Fig. 3.5, it is seen that the second order
effect is to increase the values of (l/MZ) over the linear values on
the axis. The two effects tend to cancel in the off-axis regions. Thus
it can be said in the present examples that the linear solution approximates
the exact solution to 10 percent or better for r = 500, and 6 ranging
between + 1009, and that any error wili become a successively smaller
percent as r increases.

The result of the investigation of this sectionis a set of asymptotic
formulas which give all flow properties of jets in the regions of "'inter-
mediate” flow and far downstream of nozzle exits. The method pravides
estimates of errors. The validity and accuracy of the linearized
asymptotic formulas are established. The pertinent formulas are (3. 3)
for velocities, (3.8) for flow distribution and (3. 6) for thermodynamic
properties.

In concluding this section, three properties of iet flows arec
developed which will be needed in later calculation of plume dynamics.
These are the mass flow, total pressure force and the total momentum
of jet flow across downstream boundaries. The boundaries in question
are spherical (at constant r) and bounded by circles of constant 8 ;
an example is the right-hand boundary of Fig. 3.8 . The horizontal
force at the boundary arising from pressure is given by

.0
Fj = 2mr 3 cos & P; - dy
o
2 6
=2wr S sin® cos - pj a6 P; from eq. 3.6
o
= h (6; 6 . 3. 10
g, h are the functions. mj is the total mass flow of the jet and c;
its limiting velocity. ]
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The form of h and g are easily determined; the main result
needed here however is that Fj has no zero order term, but goes to
zero with r as (1/r)2(¥Y=1), It'is understood that this is the first term
of an asymptotic series, just as are equations 3. 6.

The second property of interest is the integrated mass flow across
the same boundary. In the first approximation it is

0
rﬁj(G) = Zﬂ'r2 S pjuj sir@ de
0 ¢ 1

. P ¢ yo—1
2rh, (B;) (.5.3..)5 (-2n)Yj7" sinede
(o]

cos B - cosBp\ D
mj{l—( ) } (3.11)

1 - cos EM

The inass flow hetween 9M and 8 through a spherical ring would hence
be m. — m.(0); expression 3. 11 is the first (zero order) term of an
asymptotic Jexp¢n51on.

Finally the integrated momentum across the boundary between 0
and 6 may be computed as

M) = § {drhj(O)/dO}cj cos 9 do (3. 12)
1 ~cos®
= m.c. [l - gs(e)‘cose + ra M )(g6(9) - 1)-|
J ] J
where
_ cos 8 - cos BM
g(6) = I -~ cos

M
3.3 The Inviscid Plume Equations

The photographic evidence of Rosenberg (1961) shows the plume
to be roughly parabolic at the head, tapering downstream to a wake
having a maximum width, Since the forward speed of the missile is
highly supersonic, the flow field around the plume is hypersonic, at
least as far back as the reglon where the hypersonic parameter (M° ¢°)
1s of the order (1). Here MO is the free stream Mach number, and
a° is the local slope of the plume surface in radians. For a typical fcr-
ward speed of MO = 7, 0 = 8°; this means that the greater part of the
head of the plume is subject to hypersonic flow conditions; this fact
will be assumed in the initial analysis. For the purpose of setting up
force and momentum balances the division between the outer flow of
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the free stream and the inner jet flow will be assumed to be a surface
located approximately at the contact surface shown in Fig. 3.1. The
first step is to set up a force-momentum balance which will determine
the location of this surface. Following this, more detailed considera-
tions will position the inner and outer shocks and fix conditions in the
merged layer. A force-momentum balance normal to the piume sur-
face will consist of three parts:

(a) the hypersonic pressure reaction as the freestreain enters
the merged layer;

(b) the hyperscnic pressure reaction of the jet flow as it entercs
the same layer from the inside; and,

(c) the centrifugal pressure of the mass flow in the merged
layer.

The pressures (a) and (b) will be termed P;C\)AL and pML, J» respectively.
The centrifugal pressure (c) can be obtained from the centrifugal force
(outward) per unit arc length along the plume, designated AF/AS; this
is the force which would be exerted on a strip of length 2nr sin 8 and of
unit width, assuming the strip was straight so that the pressure forces
were additive. The coordinate system is sketched in Fig. 3.7, and is
taken to be consistent with that of the previous section. The normal
force balance states that (a) equals the sum of (b) + (c) at every point,
or

AF 1
PmL,j ¥ A5 Zersme (3.13)

o o
P ML
The pressures are given by the hypersonic formulas:

- ooMOZiZOp
pML = TP sin

2 . 2
. = 4 p.M. sin o. 3.14
PML,j = %5 PN 3O (3. 14)
( )0 = free stream conditions
( )j = jet conditions

for o°, oj, see Fig. 3.7

It is straightforward to show that

AF  _ ™ML VML

x5 T (3.15)
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M,y = mass flow in the merged layer
ML - 2verage velocity of the merged layer
R = radius of curvature (+) cf the plume

surface in the (r,0 ) plane

Putting (3.14) and (3. 15) in (3. 13, and normalizing by dividing by P
(the chamber pressure of the rocket motor), one gets

o ” P.
29_ gin“g° = v. (=4) M2 sin®o,
P J P J J

c c
m,,, V
ML ML | 1 .1
+ 2 2nr sin® R (3. 16)
p ¥

where both r and R have been non-dimensionalized by y%.

and
0 .
q = free stream dynamic pressure
8 = o+ O'j (see Fig. 3.7)
1 dr _
=30 = - cot of (3.17)

Equation (3.16) gives the inviscid plume surface. It is a second order
differential equation for the spherical radius r as a function of 8. The
second term on the right accounts for the centrifugal pressure, and
adds considerable complexity to the equation. The second derivative
appears in R, the radius of curvature; furthermore the factor myf], times
VML is not constant, and must be obtained from an independent rela-
tion. In the course of solving the equation a simplified relation was
first used, obtained from (3. 16) by dropping the centrifugal term.

The results of solving this equation did not show a close correspondence
with the data. Also it is possible to show that the centrifugal term
should be retained on the basis of an order of magnitude analysis. The
solution given here consequently will be for the full second order re-
lation {3.16).

The solution of (3. 16) requires expressions for (p; /p ) MJ2 and
(m MLVML) The first is obtained from the jet flow functlons of the
previous section (using only the linear approximation as given in eqa.
3.6 and 3.7). To obtain an expression for the variation of (mh \q, VML)
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one can set up an integral force-momentum balance in the axial direction.
The control volume in which the balance is to be computed is shown in
Fig. 3.8. The "ingoing" quantities are free stream pressure and -
momentum over an area of wr2 sin2¢, and the motor pressure and
momentum. These arve balanced bv the outgoing momentum of the
merged layer, the outgoing momentum of the jet flow from the right

hand boundary and the jet flow pressure over the same boundary.

The ingoing quantities are

2 . 2 o 04,2 2 2
mr sin 6(p + p U7) + Y ex (pex+ peerx)
2 mylp [zwq"]pcr)zsin"*e + cg.] (3. 18)
where
° o, .02
qo = 'Y-z- p M"~ = free stream dynamic pressure
Cg, = vacuum thrust coefficient
- Vacuum T;rust (definition)
™Y
2
- (pex+ Pex ex)
Pe

( )ex indicates conditions at rocket motor exit.

The approximation made in (3. 18) is that pO/qo is small, i.e., the same
as that made in the hypersc iic formulas (3. 14). The outgoing quantitiesare

. o .
[mMLvMLCOSG + Mj(9) +Fj ]
. o .
mMLVMLcosa = outgoing momentum of the merged layer
M.(6) = outgoing momentum of the jet flow across the
J right boundary of Fig. 3. 12 which can be ob-
tained from the asymptotic jet formulas (See
Eq. 3.12).
VML = average velocity of merged layer.
rﬁML = average mass flow in merged layer.
m, is mass flow of rocket motor and is constant;
J n’lML varies withlocationalong the merged layer.
Fj = pressure force of jet at right boundary; it can

be obtained from the asymptotic formulas of (3);
itis to the lowest order term (see Eq. 3. 10):
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The expressmns for MJ(B) and F: are the first terms in the asymptotic
series in 1/ rzn(‘YJ . Mji(e) st’arts with a zero order term, and Fj
with one of first order, which may be dropped by comparison in the
approximation here. The horizontal force balance can now be written

as
my+® p_[2 qTp, 1) sin®e + CS |
= (m . ML) cosco® + M(S)
and
o _ 4 2
CF = Mj(GM)/n'y~ P,

The expression (mp1, VML) can now be put in terms of r, @, and a°:

m v 1 2 5cos @ + cos @
ML ML . [Zr sin29+ p.('y.)gs( 5 M)
TYyEp - coso J
¢ (3.19)
where
F =N« (r/y*); k(v;) given below

On substituting (3. 19) in the normal force equation, (3.16), and ex-
pressing R (the radius of curvature) in terms of derivatives, one gets
a second order non-linear equation for the plume surface. Using the
variables ¥, 6 the equation can be written

145 | {1 L2 (df)z} _ 47%sin@ (a)° (b)
v Ute® @
where
. cosd dr
a = sin@ -~
- a9
2 .
_ sin 28in0® cos® |, dF 2
b = -——-—- (T) + = ¥} + cos @
viv., 6 )g4(9)
A e
-2
2r
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_ (5 cos 8 + cous 8,,)
c = Zt-z sinZO + p('yj)gS(O)‘ z M
: ) Sp('yj) ) rr'xjc.
viv:, 8 = ——a— ) Mr) =
J m -zu- coOs M) J .n.y::: pc
cos § -~ cos 6 2. 1
) = L A I
g T - cos GM ’ > 'yj+l J
. =~1
\ ‘YJ
or in functional notation
1. dbr -
L. 27 - F{r, e,a@;y.,eM} (3. 20)
r de J

This relation contains, in addition to the coordinate variables (r,8), only
two explicit parameters, ('y-,GM), and these are fixed by the gas constants
of the rocket motor exhaust, and by motor geometry. The effects of

all other parameters, i.e., combustion pressure, motor size, forward
speed and altitude, are contained implicitly in ¥. From the definition

T = (qO/pC)I/Z(r/y*) it is seen that the operative parameter is (qO/pC)l/ZIY*,

and that itis simply a scaling factor. For a given motor type, then, a
single computation will give the plume shape for all (high) altitudes, all
motor sizes, various chamber pressures, andall (supersonic)flight spceds.

It should be emphasized that (3. 20) is based on hypersonic flow
approximations, and therefore will not apply to the rear portions of the
plume where the slopes are of the order of 1/M or less. It is also true that
in the downstream region of the plume the concept of a layer contain-
ing both exterior and interior shocks does not apply; the exterior shock
will become an acoustic wave propagating outward at the mach angle,
while the inner shock will curve in and remain near the axis (see Fig 3. 1).
The large region of flow which is thus opened up between thern can be
analyzed using appropriate techniques, which are those of the linear and
second order theories of supersonic flows.

Solutions of (3. 20) are presented in the next section. In addition to
the positioning of contact surfaces which such solutions represent, it is
also possible to derive simplified properties of the double shock layer
from the inviscid model. By treating the layer as if it were a mixture
oi the ‘two gases, instead of being separated by a contact surface, it is
possible to estimate the overall thickness of the layer and its average
properties. To this end an expression can be written down for mjyj,
the mass flow in the merged layer, which is the sum of contributions
from the free stream air and the jet; it is given by (see Fig 3. 8):

25 MC 62-80-R1




My ° Moir. ML et Mi
-~ 2?
= p"UG?:rt"sinze + mJ 35(9)
or
th =l
ml\flL = 2r0 sin 9 + gs(e) (3.21)
j (U /cj)u('rj)

® (yj) as in Eq. 3.20

Using (3. 19) and (3. 21), VML can be expressed as

b VRPN (i A e I (3.22)
C. j v m :
j my*p,, ML

mlys) (3.19)/(3. 21)

The next property to be computed is the weighted average stagnation
enthalpy which, neglecting viscosity and heat conduction, is

_ m_. m. .
(ho)ML" t;n = ho-air * rJ:t L ho' jet
ML ML J
or
. o -2 . 2
mML(ho’ML _ (U /Cj) T s8in” 0 N Sf. . 23)
. 2 mly;) F2
mjcj J

Recause of the relation hetween stagnation enthalpy, static enthalpy and
velocity (h, = h+ 1/2V®), one gets for the enthalpy of the combined
gases in the merged layer:

phMLhML 1 (3 19)2
= (3.23) - —_— ‘(3‘2'5 (3. 24)
rijcj 2 5(75) *
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The average pressure can be expressed using the notation of the normal
force balance (3. 13):

(8]
PmvrL T PMmL,J
PML )

which gives

p My, V \
ML sin%a® < M~ MI‘)( ‘ ) (3. 25)

qo Try*zpc 4T R sin®

The thickness of the inviscid double shock layer may now be estimated.
Using 6ML to indicate thickness measured normal to the plume surface,
a mass flow balance gives

rhML = (27nr sin6) 6MLpMLVML
or .
m
6ML * 7w sinNGH-J p \%
ML "ML

Next, using an averaged equation of state

:(7 PML

0 1o .
ML -V ML ML

the expression for &)f], may be recast in terms of quantities already
obtained:

Y- '
< ] my;) 5 l?ML .(mMLhML>( ¢ V(S (3. 26)
ML 2T 8in 0 \ m, C;‘ J\PML VML/

in which the baired quantities are non-dimensional, given by multiplica-
tion of (qO/pc)l Z/y* into dimensional quantities. In functional notation
3. 26 takes the form

- T . O/c.
EML » F{rr es‘Yjv eM' (U /CJ)}

This is similar to the form 3. 20 except for the appearance of a new
parameter (Uo/cj) the ratio of free stream velocity to limiting jet
velocity. It is interesting to note that this parameter influences the
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thickness of the double shock luyer but not, accordmg to 3. 20, its
position. Velocity ratio (U /rJ) is equivalent, in the hypersonic approxi-
mation to the root of the ratio of stagnation temperatures; specifically

C_ T_\t/2
\/

pan‘

An extension of the analysis will give the individual shock layers,
i.e., the properties of the air layer between the contact surface and
the outer shock, and the exhaust gas layer on the inside. Assigning
the symbol ( )air to the air layer and ( )jet to the inner layer, one can
write four equations for the two layer th1cknesses and the two velocities
in the layers. They are

ML © Sjet, ML Yt %air,ML
Miee ML - 2mrsing (8 vy MPjer ML) Viet, ML)
Moir, ML - 27Esin00 0 ) Poie, ML) (Vair, M)
My VML 5 Myer, ML) Vet M)+ (M50, ML) Vair, ML)

The above equations are (1) the total thickness, (2) and (3) the mass
flow in the air and gas layers, and (4) the total momentum. There
are thus four equations for the four unknowns which are soluble by
routine algebra. The left sides are all known from the previous for-
mulas; the densities on the right are obtainable from the pressure
and enthalpy by equations of state of the same form as given for aver-
aged quantities in the merged layer.

This completes the development of methods for analysis of plume
flow in the region of the head, based on inviscid flow theory. Numerical
solutions and computations using these methods are described in the next
section.

3.4 Solution of the Inviscid Equations

The equation to be solved is (3. 20), giving the loci of plume
surfaces; it is a second order equation containing a singularity ( the
denominator (c) of (3. 20) passes through zero). The boundary con-
ditions are two in number and are applied at the exit of the rocket motor.
The integration is best carried coutby machine using standard procedures;
that used here is an application of the Runge-Kutta method expressed
in R, I, P. language on a ReComp III computer. Numerical resultsare best
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presented in graphical form showing loci of contact surfaces, singu-
larities, shock layer thicknesses, etc, Before passing to the final
results, there are two points to be mentioned which are necessary to
the understanding of the integration and the interpretation of the calcu-
lations.

The correct boundary conditions must be in accord with the
representation of the jet by the formulas of section 3.2, The sketch of
Fig. 3. 3 shows the situation. A necessary conditic . at the start of
computation is, at 8 = 8y, that T sin 8, should equal (qo/pc)1/2,i. e. that
the curve start at the lip of the nozzle. The second condition on the
slope is arbitrary. However, by definition a high alti ude plume is
such that the value of (qo/pc)l 2 is very small; the details of how the
contact surface starts should not be influential in the final result.
Consequently the curve will be started for # = 8,,, and ¥ - indefinitely
small, a set of conditions which give a determinate solution. The start
can be approximated znalytically by F = a (6, - 6)0. By substitution
in Eq. (3. 20) it can be rhown that a and n must have the foliowing values:

2
a= b3 (y sin 8 -Z}Lb)l/2
3(2 sin”8_) m

where

o
It

(sin Om)/( 1 - cos Om)

Y: &, as given in (3. 20)

n=3

These values can be used to start the machine computation at some
(small) value of T, close to 6 =6,,.

The second question is that of the singularity in Eq. (3. 20)
when the denominator (c) is zero. Inspection of (c) shows that when
8m < 1/2, the value of (c) cannot be zero for finite F sin 8, However,
for 8, > 7/2 there is a locus of points for (c) = 0 which the plume-
curve must cross. Py referring to Eq. (3. 19) it is seen that (¢c) =0
would make the momentum of the merged layer equal to zero unless,
at the same point, the slope ¢° of the contact surface is vertical.
Physical reasoning thus requires that the plume curve (contact
surface) pass through the locus of singularities vertically, It can be
shown that the form of Eq. (3. 20) is such that if the plume curve
approaches the line of singularities at an angle other than n/2, the
radius of curvature will rapidly become small, turning the curve
toward vertical and keeping the sccond derivative finite; the situation
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has a '' static stability.'' In practice it was found, in machine
calculation, that if the interval of computation did not fall exactly
on the line of singularities, then the computation proceeded across
the line vertically without special attention. The details will be
illustrated by a specific example.

For specific computations, a single value of yjet will be used:
Yjet = 1. 25, corresponding to the value for exhaust gases from a
lox - RP - 1 motor. The values of 0,, will be varied in accordance
with the following scheme: if it is assumed that exhaust nozzles have
parallel flows at the exit, then 8, can be taken as the maximum
Prandtl - Meyer expansion angle for yj = 1. 25 and for a Mach number
equal to the jet exit Mach number (M3 EX). Varying (M3 EX) will be
equivalent to varying 0., ( the relation between M3y EX and 8, is
shown in Fig. 3.9). Values of My gy of (2,3, 4, 5) will be used
corresponding to 6., of (150°, 120. 5%, 99°, 83°, ). To apply
these results to divergent nozzles it is only necessary to select the
proper 8y, and interpolate; the selection of 8, for rocket nozzles is
described in detail in section 3. 2.

The first results are shown in Fig. 3. 10, which gives the plume
shape (contact surface) near the nose for My EX = 3. This shape
starts out at an angle greater than n/2, becomes vertical, then starts
back; the locus of singularities is drawn in to illustrate the point
discussed previously. The coordinates are non-dimensionalized by
ho/pc)l7z/‘;*. and denoted by barred quantities.

The next figure (3. 11) zhows a larger section of the same plume
and compares it with the early calculations which neglected centri-
fugal pressure in the merged layer {(equivalent to solving the first
order equation (b) = 0, as defined under Eq. 3. 20). It appears that
the simplified calculations seriously underestimate the size of the
plume (30 % - 40%in terms of nose radius); it also can be shown
that the behavior of the contact surface as 8 decreases is basically
different with the centrifugal term. It is concluded that the cent